

USSR

UDC: 621.376.56(088.8)

POPOV S. G., BARUZDIN, V. I.

"A Magnetic Pulse Duration Modulator"

USSR Author's Certificate No 264449, filed 25 May 67, published 17 Jun 70 (from RZh-Radiotekhnika, No 11, Nov 70, Abstract No 11D473 P)

Translation: This Author's Certificate introduces a magnetic pulse duration modulator for controlling a thyristor current regulator. The device contains a transformer with leads of a two-section winding connected through resistors, saturation chokes and diodes to the controlling electrodes of the thyristors, and the common tap from the transformer sections connected to the negative lead of the thyristor current regulator. To increase the steepness of the leading edges of the output pulses, a switching element such as a dynistor is connected between the common tap of the transformer secondary and the negative lead of the thyristors in the current regulator in series with a resistor. V. P.

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

USSR

KUZNETSOV, O. M., POPOV, S. G., FEOKTISTOV, V. V.

"Discrete Vortices in a Planar Medium at Mo<1 and Unstable Boundary Layer at a Plate"

Moscow, Mekhanika Zhidosti i Gaza, No 5, Sep-Oct 70, pp 176-179

Abstract: Experiments in a wind tunnel qualitatively and quantitatively indicate the propagation of density waves above a plate at zero angle of attack with Maxl; the oscillating frequencies of density in this area are identical to the frequency of discrete vortices formed in the wake of the plate. Studies were performed using a shadow device with parallel light beam with defocused diaphragm and a Schlieren interferometer.

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

GEOGRAFIER SEE SEE SEE GEFENERE FERNEN FERNEN FERNEN FILTER FERNEN FERNEN FERNEN FERNEN FERNEN FERNEN FERNEN F FERNEN FERNEN FERNEN FOR FERNEN F

1/2 019 UNCLASSIFIED PROCESSING DATE--27NOV70
TITLE--THERMODYNAMIC PROPERTIES OF BINARY OXIDE SYSTEMS AT HIGH
TEMPERATURES. II. DETERMINATION OF GIBBS FREE ENERGIES OF FETO SUB3
AUTHOR-(03)-LEVITSKIY, V.A., POPOV, S.G., RATIANI, D.D.

COUNTRY OF INFO--USSR

SOURCE--ZH. FEZ. KHIM. 1970, 44(5), 1337-8

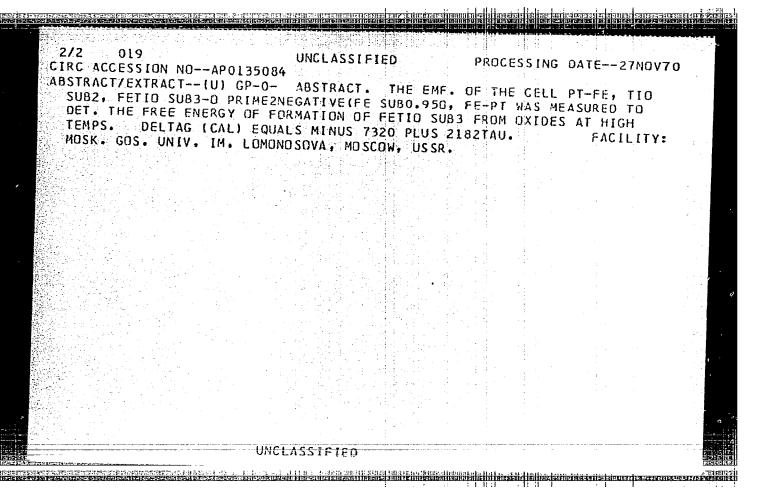
DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS-FREE ENERGY, ELECTRODE POTENTIAL, ELECTROLYTIC CELL, TITANIUM OXIDE, TITANATE, IRON COMPOUND, IRON OXIDE, ELECTROCHEMICAL ANALYSIS

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3006/1410


STEP NO--UR/0076/70/044/005/1337/1338

CIRC ACCESSION NO--APOL35084

UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

THE STATE OF THE PROPERTY OF T

USSR

UDC 620.17:669.15'74-194.28'71'27

POPOV, V. S., and <u>POPOV, S. M.</u>, Zaporozhye Machine Building Institute

"High-Manganese Steel Alloyed With Molybdenum, Tungsten, and Aluminum"

Moscow, Metallovedeniye i Termicheskaya Obrabotka Metallov, No 2, 1971, pp 65-66

Abstract: The influence of molybdenum, tungsten, and aluminum on the mechanical properties and wear-resistance of austenitic high-manganese steel produced by the electric slag method was studied. The content of carbon in the steels was limited to 0.08-0.12% in order to reveal the influence of the alloying elements on the mechanical properties. The addition of small quantities of molybdenum sharply increases the strength and plastic properties. The hardness and impact toughness remain unchanged. The influence of tungsten up to 0.3% results in an increase in strength by 40%, yield point by 75% and relative elongation and necking down by 66 and 160% respectively; 0.4-2.4% W causes a reduction in these properties, particularly the yield point. Alloying of a high-manganese alloy with aluminum causes an increase in strength and plastic properties. Molybdenum is the most effective of the alloying elements studied, particularly at 0.3% Mo.

1/1

- 31 -

"APPROVED FOR RELEASE: 08/09/2001

CIA-RDP86-00513R002202520001-7

SSSR

VDC 889.15-194.320.178.16

POPOV, S. M., and POPOV, V. S., Zaporozh'ye Machine Building Enstitute imeni V. Ya. Chubar

"Composition of the Metal Matrix of Alloys and Their Wear Resistance in an Abrasive Medium"

Moscow, Metallovedeniye i Termicheskaya Obrabotka Metallov, No 11, Nov 70, pp. 23-27

Abstract: A study was made of low-carbon alloys (to 0.1% C) with 1.33-36% Mm, 2.5-34.5% Ni, and 4-22.5% Cr, and of a high-manganese alloy with 22% Mm and chromium alloyed to the limit of solubility in austenite. The wear resistance of the Mm-alloyed alloy is related to the effect of manganese on the change in quantity of the E-mase, which forms in the surface layer of the alloy in the process of wear. The carbonless chromium martensite and ferrite possess a relatively low wear resistance (20% higher than that of St. 3 steel). An increase in the content of chromium from 2.7 to 12.4% does not lead to increased wear resistance of the G22 carbonless iron-manganese alloy.

1/1

USSR

UDC: 533.9...16

IVANOVSKIY, M. A., POPOV, S. N., POPRYADUKHIN, A. P.

"The TUR-2 Stellarator"

Tr. Fiz. in-ta AN SSSR (Works of the Physics Institute, Academy of Sciences of the USSR), 1973, 65, pp 65-72 (from RZh-Fizika, No 6, Jun 73, abstract No 6G355)

Translation: The difference between the Tor-2 stellarator and others is that the magnetic field is set up by discrete elliptical coils rather than by helical windings. The paper gives the theoretical assumptions which act as the basis for the design of the installation, and also the results of initial studies. Bibliography of 12 titles.

1/1

USSR

UDC: 533.9...16

ANDRYUKHINA, E. D., IVANOVSKIY, M. A., POPOV, S. N., POPRYADUKHIN, A. P., FEDYANIN, O. I., KHOL'NOV, Yu. V.

"Investigation of the Magnetic Field Structure of the Tor-1 and Tor-2 Stellarators"

Tr. Fiz. in-ta AN SSSR (Works of the Physics Institute, Academy of Sciences of the USSR), 1973, 65, pp 73-81 (from RZh-Fizika, No 6, Jun 73, abstract No 6G358)

Translation: The electron beam method is used to study the structure of magnetic surfaces in toroidal plasma traps with a double-helix field — the Tor-1 and Tor-2 stellarators. Beam monitoring was done by the conventional probe method and by a high-speed dielectric grid method. It is shown that the structure of the surfaces is regular up to angles of rotational conversion i of the order of 5.5% throughout the entire range of variation in i with the exception of the resonance values i = \mathcal{M} , $2\mathcal{M}$, for which expansion of the surfaces with the formation of a rosette structure is recorded. The amplitude of resonance perturbations measured with respect to the width of the rosettes is of the order of 10^{-4} of the amplitude of the main stellarator field. Bibl. 11 titles.

30_

assat vinemenenen kienen man kinsen kunnen seesi konntaikiin ja seeri ja ja ja karika ka kin ki ka kin ka mara Ka ka kin kin kin kin kin kin ka kin kin ka kin ka kin kin kin ja ja ja ja ja ja kin kin kin kin kin kin kin k

USSR

VDC 621.317.757

VITMAYEV, G. A., POPOV, S. N.

"An Instrument for Visual Measurement of the Phase-Amplitude and Phase-Frequency Characteristics of Two-Terminal Pair Networks"

V sb. Tonkiye magnitn. plenki, vychisl. tekhn. i radiotekhn. T. 1 (Thin Magnetic Films, Computer Technology and Radio Engineering--collection of works. Vol 1), Krasnoyarsk, 1971, pp 75-78 (from RZh-Radiotekhnika, No 11, Nov 71, Abstract No 11A316)

Translation: The paper describes an instrument designed for: 1) automatic measurement and observation of the phase-amplitude characteristics of nonlinear two-terminal pair networks in a frequency band, or the phase-frequency characteristics of two-terminal pair networks throughout the dynamic range with manual setting of the carrier frequency or level respectively; 2) measurement of phase difference with screen readout or by the compensation method. Technical data are given as well as a block diagram. One illustration, E. L.

1/1

- 30 -

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

Public Health, Hygiene and Sanitation

USSR

UDC 616-057:796

LOMAREV, P. I.; POPOV. S. N.; TYURIN, A. M.; SHAPKAYTS, Yu. M.; Laboratory of Functional Diagnostics, Institute of Physical Culture imeni P. F. Lesgaft

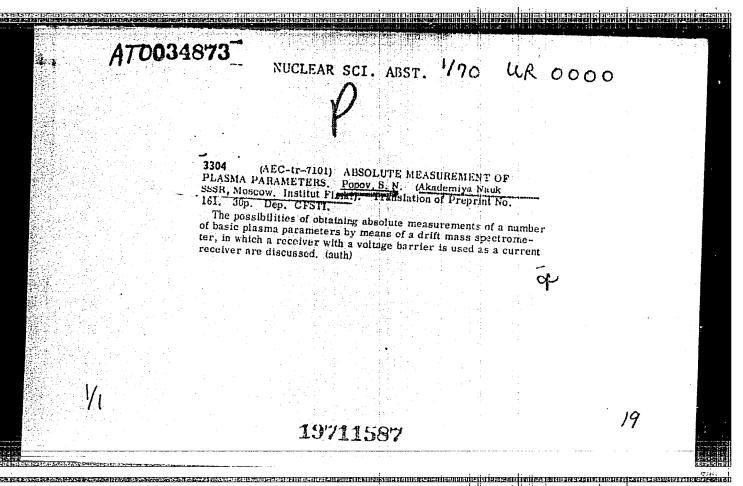
"Effect of Athletic Activity on the Incidence and Duration of Some Diseases"

Moscow, Sovetskaya Meditsina, Vol 34, No 2, Feb 71, pp 100-103

Abstract: The incidence and duration of diseases involving an initial request for medical treatment was determined for employed persons engaged in athletics (group A) and not engaged in athletics (group B). The persons in both groups were otherwise healthy males, most of them young. The study was conducted for three years. The incidence of diseases per 1,000 persons was as follows: simple sore throat A 46, B 135; influenza A 33, B 24; severe colds A 554, B 920; furunculosis and abscesses A 99, B 167; diseases of the locomotor apparatus A 127, B 107; diseases of the peripheral nervous system A 44. B 19; diseases of digestive organs A 29, B 45; eye diseases A 75, B 99. The

1/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"


USSR

LOMAREV, P. I., et al, Sovetskaya Meditsina, Vol 34, No 2, Feb 71, pp 100-103

average incidence of all diseases per 1,000 persons was 126 and 189 for group A and B, respectively. The time in days lost from work per case was 4.9 and 7.7 for group A and B, respectively. The higher incidence of diseases of the peripheral nervous system (radiculitis, plexitis, neuritis, etc) and of the locomotor apparatus for persons engaged in athletics can be explained by excessive strain in athletic training due to the injudicious nature of this training. The average number of days lost due to any single type of disease, including diseases of the peripheral nervous system and of the locomotor apparatus, was lower for athletes than non-athletes.

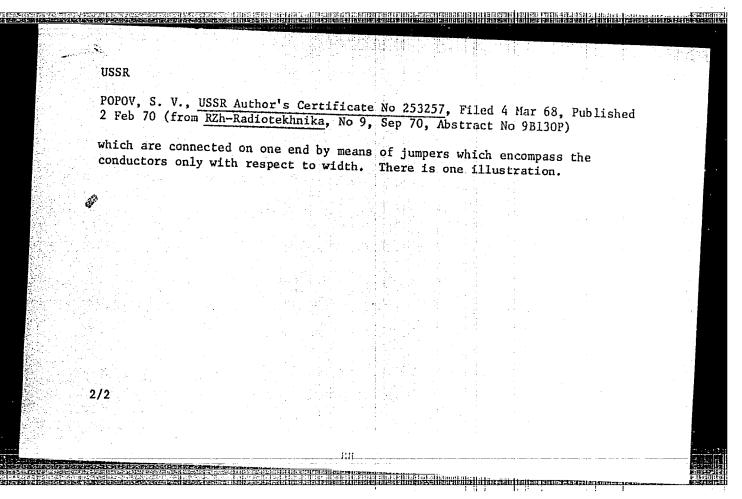
2/2

A2 _

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

USSR

POPOV :


UDC 621.372.852.1(088.8)

"Band Separating Filter"

USSR Author's Certificate No 253257, Filed 4 Mar 68, Published 2 Feb 70 (from RZh-Radiotekhnika, No 9, Sep 70, Abstract No 9B130P)

Translation: The proposed filter consists of two cascade-connected threedecibel directional couplers the connecting lines of which have a dispersion element connected to them. The inputs of the latter are connected to the outputs of the first directional coupler, and the outputs are connected to the inputs of the second directional coupler. At one input of the first directional coupler a matched load is installed, and its other input is the filter input. The outputs of the second directional coupler are outputs of the device. The directional couplers can be executed with respect to any scheme insuring maintenance of the magnitude of the three decibel coupling in the operating frequency band with accuracy to 0.5 decibels. The schematic of the dispersion element depends on the width of the operating frequency band, the steepness and degree of linearity of the frequency-amplitude characteristic of the discriminator. It is executed in the form of a combination of segments of connected lines, the central conductors of 1/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

USSR

TSVETKOV, D., and POPOV, T.

"The Effect of High Frequency General Vibration on the Activity of Some Enzymes Participating in Biological Oxidation -- in the Experiment With Cytochromoxidase, Catalase, Peroxidase"

Zh. Gigiyeny, Epidemiol., Mikrobiol., i Immunol. (J. of Hygiene, Epidemiology, Microbiology and Immunology), 1973, Vol 17, No 2, pp 157-162 (from RZh - Biologi-cheskaya Khimiya, No 22, Nov 73, Abstract No 1412)

Translation: The effect of general high frequency vibrations (150 hc) on cyto-chromoxidase, peroxidase, and catalase in liver and blood has been studied in experiments on rats. It has been established that as a result of the action of the vibration for 1 hr per day for 45 days, the activity of the above enzymes undergoes an early change -- at 15 to 30 day, the changes being unstable, exhibiting a tendency to return to normal even with prolonged exposure. The observed changes in the enzyme activity indicate some acceleration in bicoxidation.

1/1

- 61 -

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

Public Health, Hygiene, and Sanitation

USSR

UDC 614.7:66

POPOV. T., BASMADZHIYEVA, K., KURCHATOVA, DAVIDKOVA, K., and NEYKOVSKA, L., Scientific Research Hygiene Institute, Sofia

"Combined Effect of Chemical Agents That Pollute Air and Water Simultaneously"

Moscow, Gigiyena i Sanitariya, No 12, 1971, pp 77-79

Abstract: In a two-month experiment, rats were poisoned by simultaneous round-the-clock inhalation of the contact herbicide dinitroorthocresol (DNOC) at the maximum permissible level and by daily ingestion of doses twice the maximum permissible dose. The results of 32 tests (behavior, change in weight, blood inorganic phosphorus, content of sulfhydryl groups, RBC, WBC, hemoglobin, catalase, peroxidase, and cholinesterase activities, and so forth) failed to reveal any functional disturbances in the main organs and systems of the animals. This is attributed to the absence of changes in the balance of energy-rich phosphorus compounds and in the content of sulfhydryl groups. It would appear that brief exposure to DNOC, peroral at a concentration twice the maximum permissible dose and by inhalation at the maximum possible concentration, does not constitute a danger to human health.

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

USSR

UDC 577.4

POPOV, V. A., and VODOP YANOV, V. K.

"Minimization of Algorithms on the Basis of Geometric Interpretation"

V ab. Radioelektronika letatel'n. apparatov (Radioelectronics of Flying Apparatus - collection of works), No 5, Khar'kov, 1973, pp 171 - 179 (from RZh Matematika No 12, 1973, abstract No 12 V 466

Translation: A method is proposed for transforming control algorithms on the basis of v. M. Glushkov's model (RZh Mat, 1966, 8 V135). To minimize the number of logical conditions, a geometric interpretation of this model in theorem on the possibility of minimizing the number of logical conditions of the algorithm is proven.

Abstract by A. Sapozhenko.

1/1

- 60 -

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

USSR

UDC 577.4

POPOV, V. A., SKIBENKO, I. T., and MOKLYAK, N. G.

"A List of Types of Systems of Indeterminate Boolean Functions"

V sb. Radicelektronika lebatel'n. apparatov (Radicelectronics of Flying Apparatus - Collection of Works), No 5, Khar'kov, 1973, pp 152 - 158 (from RZh Matematika No 12, 1973, abstract No 12 V465)

Translation: This article lists the types of systems of indeterminate Boolean functions with respect to groups of variable transpositions, inversions, and transformations of a single type. The case in which the groups act both on the area of determinacy and in the area of significance of the system function is considered. The numbers of types of systems for $n,m \le 3$ are obtained. It is found that the number of these types when n = m = 3 exceeds 10^8 . Cyclic indices of the groups considered are found but are not given in the article.

Abstract by A. Sapozhenko.

1/1

AND THE SECOND S

USSR

UDC: 681.3.06:51

POPOV, V. A. and VODOP'YANOV, V. K.

"Minimization of Algorithms on the Basis of Geometric Interpreta-

Kharkov, V sb. Radioelektronika letatel'n. apparatov (Aerospace Electronics--collection of works) No 5, 1973, pp 171-179 (from RZh--Avtomatika, telemekhanika i vychislitel'naya tekhnika, No 12, 1973, Abstract No 12B71)

Translation: On the basis of the Glushkov algorithmic system, the representation of any algorithm is considered in a disjunctive situation on the basis of product operations and x-disjunctive operators. Among the set of regular forms of the algorithm are the normal, canonical, and minimal.

A theorem of the possibility of minimizing the number of logic conditions of the algorithm is proved, and an iterative procedure is proposed for the algorithm with the use of a theoretical, multivariate regular operation for the intersection of disjunctive complexes represented in geometric form as the coating of an m-dimensional unit cube. Bibliography of four. Resume.

organismus markindika karakusta eranga. Organismus markindika karakusta karakusta karakusta karakusta karakusta karakusta karakusta karakusta karakus

USSR

POPOV, V. A., SKIDANENKO, V. I. (Togliatti Polytechnical Institute)

"Phase Transitions and Critical Points in a Biaxial Antiferromagnetic"

Kiev, Ukrainskiy Fizicheskiy Zhurnal, March 1974, pp 387-396

Abstract: Phase reversal of magnetic sublattices in a biaxial antiferromagnetic, with the magnetic field directed along the "easy" and "difficult"

The existence of a critical first-order point is shown for the case in which the magnetic field is directed along the "easy" plane. Behavior of solutions for the antiferromagnetic ground state and features of the magnetic susceptibility tensor near the critical first-order point are examined.

The antiferromagnetic ground states are found, and conditions for realizing the first- and second-order phase transitions, when the magnetic field is directed along the "difficult" plane, are determined. The phase diagram shows the critical triple and quadruple points and a special triple point at which the character of the phase transition changes.

The article includes 37 equations and one figure. There are 11 references.

essa reges reconsistente de control de la control de l La control de la control de

USSR

UDC: 681.32.001

POPOV, V. A., MOKLYAK, N. G., SKIBENKO, I. T., SYCHEV, A. V., Khar'kov

"On a Method of Optimum Synthesis of Universal Logic Modules"

Leningrad, Izvestiya VUZov: Priborostroyeniye, Vol 16, No 11, 1973, pp 58-61

Abstract: Previous papers have established a number of properties inherent in Boolean functions with high logical effectiveness, defined as the number of classes or types of subfunctions obtained by adjustments, and have also suggested a method of constructing universal logic modules which maximize the number of subfunctions. This paper proposes a group theory approach to synthesizing optimum universal logic modules which enables purposeful sorting of Boolean functions rather than trial and error and also considerably reduces the number of external adjustments which give identical subfunctions. The proposed method was used to develop an algorithm for synthesizing optimum universal logic modules. The algorithm is written in ALGOI-60 and realized on the BESM-4 computer. The circuit of one of the logic functions.

1/1

odestinistaties in eties state trius dere influere en grand in de la communication maint pullum en de des en c La saint en en communication de la communication de la communication de la communication de la communication d

USSR

UDC: 533.9...15

SHVAROV, I. K., IVANCHINOV -MARINSKIY, N. N., POPOV. V. A.

"A Method of Measuring the Density and Frequency of Electron Collisions of an Isotropic, Weakly Ionized Plasma"

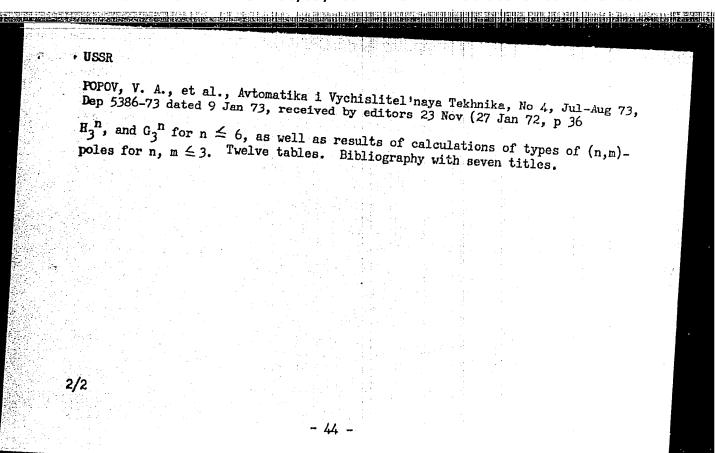
USSR Author's Certificate No 347954, Division H, filed 3 Jul 70, published 4 Sep 72 (from RZh-Fizika, No 6, Jun 73, abstract No 6G134 P)

Translation: A method is described for measuring the density and frequency of electron collisions of an isotropic, weakly ionized plasma. The attenuation constants of a counterclockwise polarized microwave are measured at two magnetic field strengths for a volume of plasma contained in the magnetic field created by a solenoid. The plasma parameters are determined from the known relationships of each of the two attenuation constants to the concentration and frequency of electron collisions for the given volume of plasma.

1/1

USSR

UDC 519:62-507


POPOV, V. A., MOKLYAK, N. G., and SKIBENKO, I. T.

*Enumeration of Types of Ternary Switching-Function Systems"

Riga, Avtomatika i Vychislitel naya Tekhnika, No 4, Jul-Aug 73, No. Dep 5386-73 dated 9 Jan 73, received by editors 23 Nov (27 Jan) 72, p 36

Translation: The article considers systems of m ternary switching functions of n variables (SF) to describe ternary (n,m)-poles. A determination is made of the number of equivalence classes (types) of (n,m)-poles relative to five different groups inducing a given equivalence: 1) symmetrical group S_n (3) of order n! to the 3ⁿ power; 2) negation group D₃ of order 2ⁿ to the 3ⁿ power; 3) cyclic-negation group T₃ of order 3ⁿ to the 3ⁿ power; 4) group H₃, which is the semidirect product of groups S_n (3) and D₃; 5) group G₃, which is the semidirect product of S_n(3) and T₃ⁿ. The authors consider the case in which any of these groups acts on the domains of definition of an SF system; and another made of theorems of Polya and de Bruyn which employ the cycle indices of permunade of theorems of Polya and de Bruyn which employ the cycle indices of permunade of theorems. To find the cycle indices of the groups under consideration, an effective algorithm, written in ALGOL-60 and realized on a BESM-4 digital computer, is offered. The authors present the cycle indices of groups S_n(3),

o destructionel electricist electricist de l'acceptant de l'accept

USSR

UDC: 621.317.3:[621.315.61+621.315.592]

URYVSKIY, Yu. I., SYNOROV, V. F., CHURIKOV, A. A., FOPOV, V. A., KONONOV, V. I., LAVRENT'YEV, K. A., MASLENNIKOV, P. N.

"Ellipsometric Method of Checking Dielectric and Semiconductor Films"

Elektron. prom-st'. Nauch.-tekhn. sb. (The Electronics Industry. Scientific and Technical Collection), 1972, No 2, pp 82-83 (from RZh-Radiotekhnika, No 12, Dec 72, abstract No 12A393 by A. K.)

Translation: The ellipsometric inspection method is distinguished by high information capacity and resolution: It enables simultaneous measurement of the thickness and index of refraction of the film on a substrate during production with accuracy of up to 1 nm and 0.05 respectively. The method is based on determining the change in parameters of polarized light reflected from the surface being studied.

7/1

USSR

POPOV, V. A. and SKIDANENKO, V. I.

"Dependence of the Resonant Frequency of Biaxial Antiferromagnetics on the Temperature"

Leningrad, Fizika Tverdogo Tela, vol 15, No 3, 1973, pp 899-901

Abstract: The intersection of two branches of the resonance frequency curves occurs in biaxial ferromagnetics in a strong magnetic of the energy spectrum of biaxial ferromagnetics in a strong magnetic field on the temperature is computed. It is shown that the apparently connected with the fact that the activation energy of everywhere in the thermodynamic stability region of the antiferromagnetic vector perpendicular to the "easy" axis. The authors bemagnetics in a magnetic field whose direction is parallel to the waves in terms of the temperature is then obtained.

USSR

UDC 621.372.413

POPOV, V. A. and KHIZHNYAK, N. A.

"Theory of Resonators Loaded With Resonance Disturbing Bodies"

Radiotekhnika. Resp. mezhved. temat. nauch.-tekhn. sb. (Radio Engineering. Republic Interagency Thematic Scientific-Technical Collection of Articles), 1972, vyp.21, pp 117-130 (from RZh-Radiotekhnika, No 11, Nov 72, Abstract No 11 Bl25)

Translation: The method of integral equations is used to obtain the expressions for the field and natural frequency of a resonator of regular shape with a dielectric of a small spherical disturbance. In the case of a resonance disturbance, the frequency shift is commensurate with the difference between the natural frequencies of the resonator while the field takes on a structure which is transitional to the shown that the structure of the field of a resonator can be controlled by changing trations and five bibliographic entries. Resume.

1/1

- 142 -

AND THE PROPERTY OF THE PROPER

USSR

UDC 517.51

SENDOV, Bl., and POPOV, V. A. (Sofia)

"Exact Asymptotic Behavior of the Best Approximation by Algebraic and Trigonometric Polynomials in a Hausdorff Metric"

Moscow, Matematicheskiy Sbornik, Vol 89, No 1, Sep 72, pp 138-147

Abstract: The article gives the exact asymptotic behavior of the best approximation by algebraic or trigonometric polynomials respectively in a Hausdorff metric in the class of all bounded functions on the segment [a, b] or in the class of all bounded 2N-periodic functions respectively.

The best approximation of the bounded function f by algebraic polynomials of degree n in a Hausdorff metric is defined by the formula $E_n(f)_r = \rho \in H_n$, where H_n is the set of all algebraic polynomials of degree no greater than n, while the best approximation of the 2π -periodic bounded function φ by trigonometric polynomials of order n is defined by the

1/3

enter de company de la comp

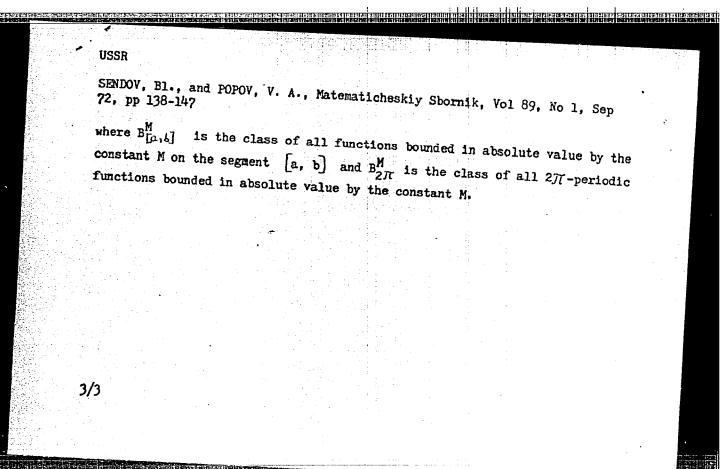
USSR

SENDOV, Bl., and POPOV, V. A., Matematicheskiy Sbornik, Vol 89, No 1, Sep 72, pp 138-147

formula $E_n^T(\phi)_r = \inf_{T \in T_n} r(\phi, T)$, where T_n is the set of all trigonometric polynomials of order n.

It is proved that the following equalities take place:

$$\lim_{n\to\infty}\sup_{f\in D^M_{\{a,b\}}}\frac{n}{\ln n}E_n(f)_r=\frac{b-\alpha}{2},$$


$$\lim_{n\to\infty}\sup_{\varphi\in D^{Al}_{2n}}\left(\frac{n}{\ln n}E_n^T(\varphi)_r=1\right)$$

2/3

9 -

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

teristi in teristi in

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

1/2 037
TITLE-HYGIENIC ASSESSMENT OF TETRAHYDROFURAN AS AN ATMUSPHERIC POLLUTION

AUTHOR—FOPDV. V.A.

COUNTRY UF INFO—USSR

SCURCE—CICIYENA I SANITARIYA, 1970, NR 5, PP 16-19

DATE PUBLISHED—————70

SUBJECT AREAS—MECH., IND., CIVIL AND MARINE ENGR

TOPIC TAGS—AIR POLLUTION, WHITE RAT, FURAN

CCONTROL MARKING—ND RESTRICTIONS

DOCUMENT CLASS—UNCLASSIFIED
PNUXY RELL/FRAME—1992/1642

SIEP NO—UR/0240/70/000/005/0016/0019

GIRC ACCESSION NO—APO112636

UNCLASSIFIED

2/2 007 UNCLASSIFIED CIRC ACCESSION NO-APOLIZ636 PROCESSING DATE--020CT70 ABSTRACT/EXTRACT-- (U) GP-0- ABSTRACT. THE ONE TIME MAXIMUM PERMISSIBLE CONCENTRATION OF TETRAHYDROFURAN (THE) IN THE ATMOSPHERE IS SUGGESTED TO BE SET AT A LEVEL OF 0.2 MG-M PRIMES ON THE BASIS OF DETERMINING THE THRESHOLD VALUE OF SMELL OF THE VAPOURS AND THE BIDELECTRIC CEREBRAL ACTIVITY OF MAN. SANITARY TOXICOLOGIC TESTS CARRIED OUT OVER ALBINO RATS FOR A PERIOD OF 3 MONTHS MADE IT POSSIBLE TO RECOMMEND THIS LEVEL AS THE DAILY AVERAGE MAXIMUM PERMISSIBLE CONCENTRATION. FIELD UBSERVATIONS PROVED AN EXPERIMENTAL THE PLANT, PRODUCING 100 TONS A YEAR, TO BE A RATHER INSIGNIFICANT SOURCE OF ATMOSPHERIC POLLUTION. HOWEVER, THE THE PLANT, PRODUCING 400 TONS A YEAR, CAUSES AIR POLLUTION WITH THE VAPOURS UP TO A DISTANCE OF 75 M. FACILITY: INSTITUT BOSHCHEY I KOMMUNAL NOY GIGIYENY IM, A. N. SYSINA AMN SSSR, MOSCOW. UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

USSR

UDC: None

BAR 'YAKHTAR, V. G., BOROVIK, A. Ye., and POPOV, V. A.

"Theory of the Intermediate State of Antiferromagnetic Objects"

Moscow, Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, vol 62, No 6, 1972, pp 2233-2242

Abstract: The theory of the intermediate state of antiferromagnetics in an external field is given in this article. Beginning their analysis with an expression for the various phases that can occur in antiferromagnetics, depending on the direction and magnitude of the external magnetic field, the authors develop a theory of perturbations through which the magnetic moment distribution in the intermediate state can be found with any degree of accuracy. Results of an ellipsoid are given under the assumption that the magnetic moment and antiferromagnetism vectors are in uniform distribution. Also plate, where the free antiferromagnetic energy is varied with respect to the vectors. Expressions are obtained for the energy of thank A. I. Akhiyezer and V. V. Yeremenko for their comments; they tures, Ukrainian Academy of Sciences.

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

HSSR

UDC 669.71.48

POVKH, I. L., CHEKIN, D.V., SMIRNOV, V. A., BAZILEVSKIY, V. M., OKUNEV, V. M., POPOV, V. A.

"Study of the Possibility of the Impoverishment of Fused Salt Slags From Aluminum Production by Electromagnetic Weighting"

Tr. Donetsk. NII Chern. Metallurgii [Works of Donets Scientific Research Institute for Ferrous Metallurgy], 1970, No. 20(4), pp. 21-25. (Translated from Referativnyy Zhurnal Metallurgiya, No. 5, 1971, Abstract No. 5 G177 by the authors).

Translation: Studies performed on the electromagnetic weighting of salt slags produced in melting Al showed that it can be used to extract up to 98% of the Al and 83% of the oxides. 3 figs; 2 tables.

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

USSR

UDC: 621.694.2

BEZNOGIKH, YU. D., ZINOV'YEV, L. P., KADYROV, R. B., KARYACIN, YU. K., PLYASHKEVICH, N. N., POPOV, V. A., SEMENYUSHKIN, I. N. and STEFFANTUK, V. L.

"Injector Debuncher of the OIYAI Synchrophasotron With Energy Modulation of the Accelerated Beam"

Moscow, Fribory i Tekhnika Eksperimenta, Zhurnal Akademii Nauk SSSR, No 1, Jan/Feb 72, pp 37-38

Abstract: The particle intensity in the OTYAI synchrophasotron can be increased by 75% by reducing the energy scattering in the outlet beam and by modulating the energy of the injected beam. Foth functions can be performed by a single high-frequency debuncher resonator located at a certain distance from the linear accelerator.

The debuncher resonator is 1/4 of the wave length of the round coaxial line. The tuning is achieved by deflecting the end walls and by a secondary power input. The diagram and the description of this device are presented. Some experimental results obtained with and without the debuncher are also given.

1/1

USSR

UDC 621,311,1,064,1,001,24

POPOV, V. A., Engineer, Moscow Order of Lenin Power Engineering Institute

"Utilization of One Version of Solving Systems of Linear Equations by the Gaussian Method for Calculation of Complex Damage in Electrical Systems on Digital Computers"

Hinsk, Izvestiya vysshikh uchebnykh zavedeniy -- Energetika, No 5, 1972, pp 3-7

all and the state of the state

Abstract: One of the methods of determining the electric variables for multipoint asymmetries in electric systems (simultaneous short circuits and phase discontinuities or several short circuits, and so on) is calculation by the complex circuit diagrams in which the circuits of the individual series are connected at the damage points via special coupling multipoles simulating the boundary conditions of the damage and via a common base junction coinciding with the neutrals of the circuits. The conductivity matrices of the systems of linear equations describing complex circuits are not symmetric with respect to the principal diagonal. A study was made of a version of the method of successive gaussian exclusions to simplify the algorithm for calculating such equations on digital computers and for efficient utilization of the readyaccess memory.

227

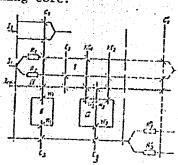
USSR

UDC 621.374.33

VIGDORCHIK, V. G., DARKOV, S. K., KORTEVA, T. V., MEYERSON, S. I., POPOV, V. A., SITNIKOV, O. P., TRYKOV, Yu. V., OSTRYY, Kh. Ya.

"A Magnetic Digital Element"

Moscow, Otkrytiya, izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, No 21, Jul 71, Author's Certificate No 308518, Division H, filed 16 Feb 70, published 1 Jul 71, pp 207-208


Translation: This Author's Certificate introduces a magnetic digital element which contains information, compensation and two switching cores. The device has a recording circuit, a coupling loop with flux quenching on resistors, and a ready circuit for the switching cores. As a distinguishing feature of the patent, in order to increase speed, improve stability, extend the range of ambient temperature variation and simplify the power supply system, the element is equipped with resistors in the coupling loop, dynamic excitation and dynamic magnetizing cores, one additional winding on each of the switching and compensation cores, and also two additional windings on the information core. The primary windings of the dynamic excitation and dynamic magnetizing cores are connected in series in the circuit of one of the cadence currents. The series-connected auxiliary windings of the switching cores and 1/2

at description of the control of the

USSR

VIGDORCHIK, V. G., et al., Otkrytiya, izobreteniye, promyshlennyve obraztsy, tovarnyye znaki, No 21, Jul 71, Author's Certificate No 308518, Division H, filed 16 Feb 70, published 1 Jul 71, pp 207-208

the secondary winding of the dynamic excitation core form a loop for dynamic excitation of the switching cores. The series circuit comprised of the secondary winding of the dynamic magnetizing core and one of the auxiliary windings of the information core forms a loop for dynamic excitation of the third winding of the dynamic excitation core and the third winding of the dynamic excitation core are connected in series to the ready winding of the switching core.

2/2

16 -

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

en energiese en le senticipal de la plate de la proposición de la la companya de la companya de la companya de Companya de la compa

USSR UDC: [537.226+537.311.33]: [539.3+536.21+536.631+536.651]

POPOV, V. A., MANZHELIY, V. G., and VLADIMIROVA, L. I.

"Thermal Capacitance of Ammonium Deuteride Solids"

Tr. Fiz.-tekhn. in-t nizk. temperatur AN USSR (Transactions, Physico-Technical Institute of Low Temperatures, Ukrainian Academy of Sciences) 1971, No. 12, pp 18-23 (from RZh-Fizika, No. 11, 1971, Abstract No. 11E832)

Translation: The heat capacitance of solid ND3 in the temperature interval of 2-197° K as well as the melting enthalpy H_{tr} and the temperature T_{tr} corresponding to the triple point of ND3 are determined. The contributions of the various forms of the molecular thermal movement in the heat capacity are analyzed. The enthalpy of the formation of orientation defects in solid ND3 is determined. A discussion is given of the temperature dependence of the thermal capacitance. Bibliography of 16.

1/1

110

PREFERENCE CONTROL OF THE SECOND OF THE SECOND DESIGN OF THE SECOND OF T

USSR

F 32 3

POPOV. V. A., SKIDANENKO, V. I.

"Coupled Spin Waves and Spin-Spin Resonance in Antiferromagnetics"

Leningrad, Fizika Tverdogo Tela, Vol 14, No 2, 1972, pp 507-514

Abstract: The transformation of spin waves of one polarization into spin waves of another in two-axis antiferromagnetics in a diagonal magnetic field is considered. It is shown that antiferromagnetics as a whole represent two oscillatory systems which remain uncoupled with a constant field directed along the axis of symmetry. They are, however, coupled in a diagonal field. If only frequency field, there is a transfer of high-frequency of a high-the second oscillatory system due to the coupling between the two. It is found also that this transfer is a maximum when the coupling transformation of one spin wave to the other and for the change of shape of the resonance curves are analyzed. The possibility of

1/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

USSR

POPOV, V. A. et al, Fizika Tverdogo Tela, Vol 14, No 2, 1972, pp 507-514

using antiferromagnetics as high-frequency filters under spinspin resonance conditions, with the width of the pass band controlled by the angle between the field and the crystal axis of
symmetry, is indicated. The authors are grateful to G. A. Smolenskiy for his discussions and to A. S. Borovik-Romanov, V. A.
Ozhogin, and Ye. G. Radashevskiy for their valuable comments.
They are connected with the Physico-Technical Institute for Low
Temperatures, USSR Academy of Sciences, Kharkov.

2/2

- 63 **-**

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

USSR

UDC 629.78.015.076.8

KUZMAK, G. YE., POPOV, V. A.

"Study of the Transfer of Rotational into Oscillatory Motion Upon the Entry of an Uncontrolled Ballistic Body into the Atmosphere"

Uch. zap. Tsentr. aero-gidrodinam. in-ta (Scientific Notes of the Central Aerohydrodynamic Institute), 1970, Vol. 1, No. 6, pp 82-90 (from RZh-Raketo-stroyeniye, No 9, Sep 71, Abstract No 9.41.58)

Translation: The problem of determining conditions for the transfer of rotation relative to the center of mass into oscillations relative to the center of mass upon the entry of a ballistic body into the atmosphere is discussed for plane motion. The known analytical solutions are analyzed and a detailed numerical study is made of the sinusoidal moment characteristic. The fundamental parameters are identified and probability evaluations are given for the altitude and angle of attack of the body at the time of the transfer of rotation into at the boundary of the atmosphere. 5 ill., 5 ref. Resume.

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

USSR

WC 541.8.547.831.547.261/262

POPOV. V. A., YUSHROVA, I. K., BOLAVINA, I. G., CHERKASOV, N. KH., and KHARLAMPOVICH, G. D.

"Study of the Solubility of Monosubstituted Quinoline, Isoquinoline, Quinaldine, and Lepidine Phosphates in Ethanol and Methanol of Different Concentrations"

Leningrad, Zhurnal Prikladnoy Khimii, Vol 44, No 11, Nov 71, pp 2589-2591

Abstract: Solubility of monosubstituted quinoline, isoquinoline, quinaldine, and lepidine phosphates in aqueous-alcoholic mixtures of ethanol and methanol increases with with temperature increase and with a drop in the concentration of alcohols. In the 0-10° temperature range the phosphates can be arranged in the following order of decreasing solubility: lepidine phosphate isoquinoline phosphate quinaldine phosphate. In the 30-50° range the order is: isoquinoline phosphate quinaldine phosphate lepidine phosphate quinaldine phosphate. These differences in their solubility may be used to obtain pure products.

1/1

- 69 -

THE PROPERTY OF THE PROPERTY O

USSR

UDC 629.19:533.6

KUZMAK, G. Ye., POPOV, V. A.

"Investigation of the Conversion of Rotary Motion to Oscillatory Motion When an Uncontrolled Ballistic Missile Enters the Atmosphere"

Uch. zap. Tsentr. aero-gidrodinam. in-ta (Scientific Notes of the Central Aerohydrodynamics Institute), 1970, 1, No 6, pp 82-90 (from RZh-Mekhanika, No 10, Oct 71, Abstract No 10B273)

Translation: The paper deals with the problem of determining the conditions of transition from rotation relative to the center of mass to oscillations relative to the center of mass for plane motion upon atmospheric entry of a ballistic missile. The known analytical solutions are analyzed, and a detailed numerical study is made of the sinusoidal moment characteristic. Basic parameters are derived, and probabilistic estimates are made of the altitude and angle of attack of the missile at the instant of transition from rotation to oscillations in the case of uniform distribution of the values of the angle of attack on the boundary of the atmosphere. Resumé.

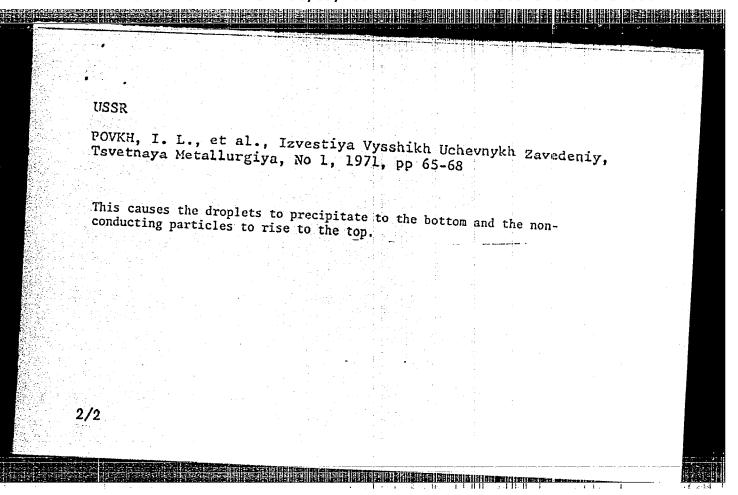
1/1

-23-

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

USSR -

UDC:669.714


POVKH, I. L., CHEKIN, B. V., SMIRNOV, V. A., BAZILEYSKIY, V. M., OKUNEV, V. M. and POPOV. V. A., Donets State University, Donets Scientific Research Institute for Ferrous Metals, State Scientific Research and Planning Institute of Alloys and Nonferrous Metal Processing

"Extraction of Aluminum and Oxides From Salt Slags Using Electromagnetic

Ordzhonikidze, Izvestiya Vysshikh Uchevnykh Zavedeniy, Tsvetnaya Metallurgiya, No 1, 1971, pp 65-68

Abstract: The possibility in principle of the process of extraction of aluminum buttons and oxides from melted salt slags using electromagnetic forces is demonstrated. The basis of the phenomenon is the fact that when a weakly conducting liquid in which conducting droplets and nonconducting particles are suspended is placed in crossed electrical and magnetic fields, the specific gravity of the conducting phases increases.

CIA-RDP86-00513R002202520001-7" APPROVED FOR RELEASE: 08/09/2001

1/2 0.25

PROCESSING DATE-- 20NOV70

TITLE--CENSITY OF SPIN WAVE STATES IN AN ANTIFERROMAGNET -U-AUTHOR-(03)-BAKYAKHTAR, V.G., POPOV, V.A., KVIRIKADZE, A.G.

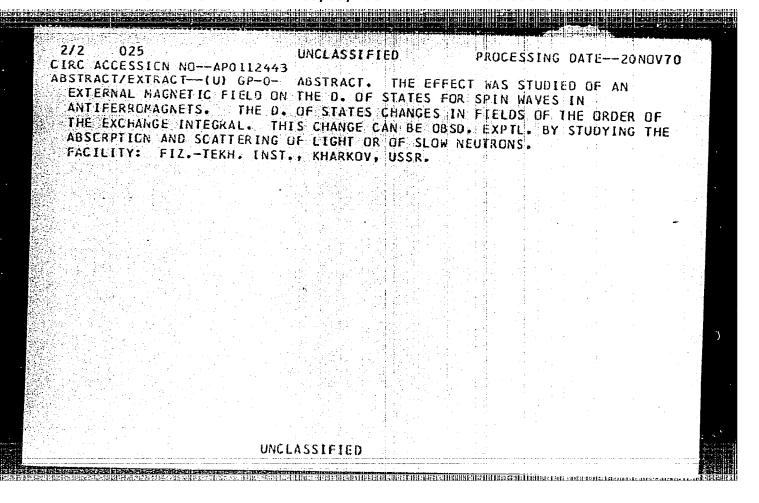
CCUNTRY OF INFO--USSR

SGURCE--UKR. FIZ. Zh. (RUSS. ED.) 1970, 15(1), 167-9

DATE PUBLISHED ----- 70

SUBJECT AREAS--PHYSICS

TOPIC TAGS-ANTIFERROMAGNETIC MATERIAL, ANTIFERROMAGNETIC THEORY, SPIN WAVE, SPIN HAVE THEORY, EXTERNAL MAGNETIC FIELD, CHARGE DENSITY, LIGHT


CENTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1992/1449

STEP NO--UR/0185/70/015/001/0167/0169

CIRC ACCESSION NO--APOLIZ443

UNCLASSIFIED

USSR =

BAR YAKHTAR, V. G., BOROVIK, A. YE., POPOV, V. A., and STEFANOVSKIY, YE. P., Physicochemical Institute of the Academy of Sciences Ukrainian

"The Domain Structure of an Antiferromagnet Resulting From Variations in the Character of the Magnetic Anisotropy"

Moscow, Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, Vol 59, No 4, Oct 70, pp 1299-1306

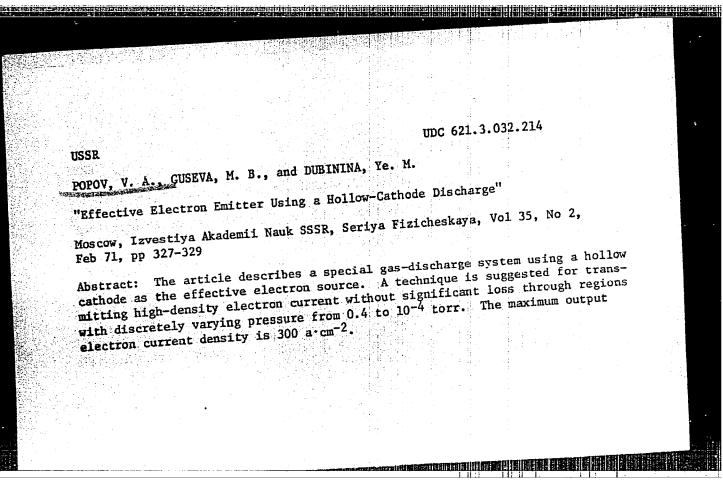
Abstract: The article considers the case of the phase transition (with respect to temperature) of the first kind $\varphi_{\parallel} \Longrightarrow \varphi_{\perp}$. Distributions are obtained for antiferromagnet sublattice magnetic (900 bound- Φ_{\perp} moments at the interfaces of phases and Фп ary), as well as 1800 domain boundaries in antiferromagnets with weak ferromagnetism. The surface energies of the 90 and 1800 domain walls are calculated, and the domain structures for a plane-parallel plate are determined and domain sizes estimated. It is shown that a thermo-

1/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

a, kana era ara, estimanulullulli da en kullinik irik este betra luklu estet estimania estim

USSR


BAR YAKHTAR, V. G., et al., Zhurnal Eksperimental noy i Teoreticheskoy Fiziki, Vol 59, No 4, Oct 70, pp 1299-1306

dynamically stable domain structure may occur in the phase transition due to weak ferromagnetism of the phase with magnetic anisotropy of the "easy plane" type. The surface energy of the 90° domain boundary is significantly less than that of the 180° domain boundary. However, the surface energy of the 180° interface declines significantly as the phase transition temperature is approached and becomes on the order of the 90° interface.

The authors thank A. I. AKHIYEZER, A. S. BOROVIK-ROMANOV and V. V. YEREMENKO for discussing the results.

2/2

... po

1/2 064 UNCLASSIFIED PROCESSING DATE--27NOV70
TITLE--PREPARATION OF CHMIC CONTACTS IN SEMICUNDUCTORS -U-

AUTHOR-(03)-POPOV, V.A., PIKHTIN, A.N., YASKOV, D.A.

COUNTRY OF INFO--USSR

SOURCE--PRIB. TEKH. EKSP. 1970, (2), 238-9

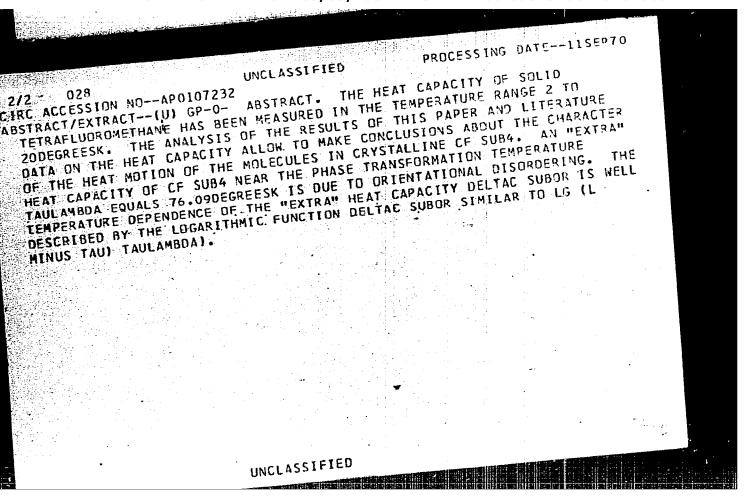
DATE PUBLISHED ---- 70

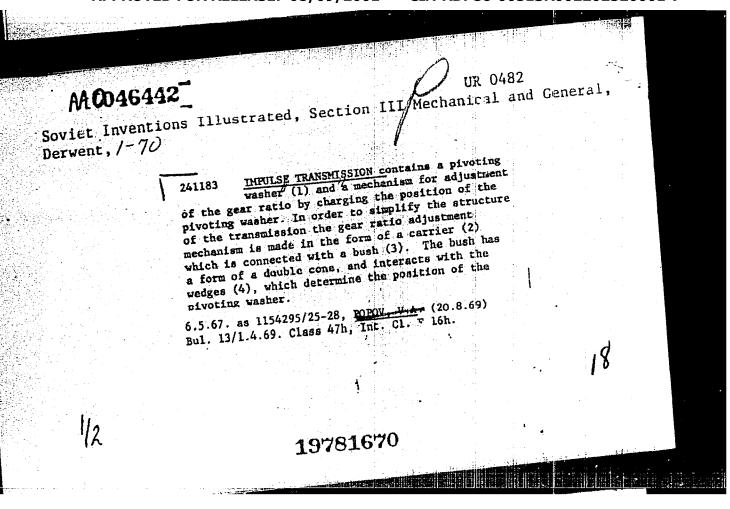
SUBJECT AREAS--PHYSICS, ELECTRONICS AND ELECTRICAL ENGR.

TOPIC TAGS-SEMICONDUCTOR DEVICE, SEMICONDUCTOR MATERIAL, LASER APPLICATION

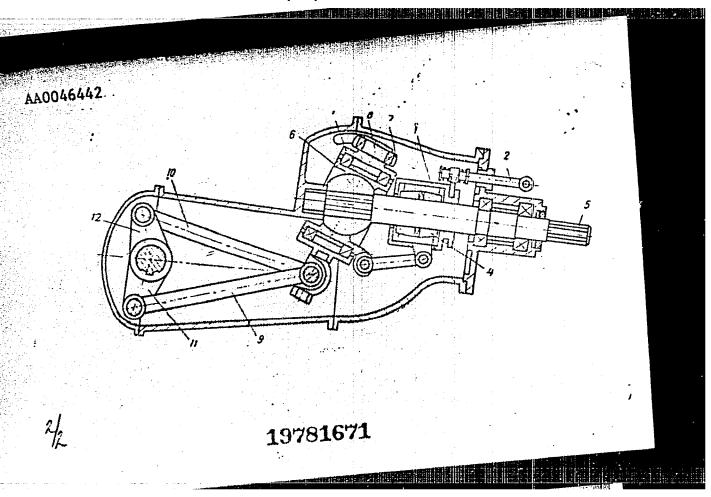
CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3006/1801


STEP NO--UR/0120/70/000/002/0238/0239


CIRC ACCESSION NO--APO135366

UNCLASSIFIED


2/2 064	UNCLASSIFIED	PROCESSING DATE27NOV7	o
CIRC ACCESSION NOAPO13536 ABSTRACT/EXTRACT(U) GP-0-	a presume APE GIVE	WAS USED TO PREP. OHMIC N FOR ALLOYING OF DIFFEREN FOR MATERIALS.	T
CONTACTS IN SEMICONDUCTURE METALS AND MIXTS. INTO A FACILITY: LENINGRAD. ELE	SERIES OF SEMICONDUC KTROTEKH. INST., LEN	INGRAD, USSR.	
			-
			•
	INCLASS 1F1EO		
	A LANGE OF THE PARTY OF THE PAR		

	PRO	CESSING	DATE11	SEPTO
U.LLASSI FI		1 - 1	•	*
028 - or could CH SU	DT Y			
MANITHE ILY, V.C	POPOV. V.A.		1	
TEE-THE HEAT CAPACITY OF SOLITON THE THE HEAT CAPACITY OF SOLITON THE SOLITON OF SOLITON	10		•	
DUNTRY OF INFOUSSR		n 65-72		
JUNITRY UT 1111 - 1970. V	JL 37, NR 1, P	, 05.		_
DUNTRY OF INFOUSSR DURCEPHYSICA STATUS SOLIDI, 1970, VI				
ATE PUBLISHED70				
ATE PUBLISHE				
UBJECT AREASCHEMISTRY, PHYSICS TOPIC TAGSHEAT CAPACITY, CRYSTAL STR	une TC	III AR STRI	JCTURE,	
UBJECT AREAS	LUCTURE, MULEU	ULA.		
TOPIC TAGS-HEAT CAPACITY, CRISTALE FLUORINATED ORGANIC COMPOUND, METHAL	4E			
FLUORINATED DROAM		- 1		
		1		•
		:		
CONTROL MARKINGNO RESTRICTIONS				10077
CONTROL	P NOGE/0030	/70/037/	001/0055	λ θο τς
DOCUMENT CLASSUNCLASSIFIED STE	b 4795199			
DROXY RECLINA				
THE ACCESSION MOAPO107232 HNCLASSIFI	r n			

"APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7

Acc. Nr: AP0043583

Ref. Code:

Zhurnal Eksperimental noy i Teoretichesko PRIMARY SOURCE:

Fiziki, 1970, Vol 58, Nr 2, pp 494-506

LOW FREQUENCY ANTIFERROMAGNETIC RESONANCE IN COPPER CHLORIDE DIHYDRATE AND PHASE TRANSITIONS

V. G. Baryakhtar, A. A. Galkin, S. N. Rovner, V. A. Popov

Antiferromagnetic resonance in a CuCl2 2H2O single crystal is investigated at frequencies of 5.2, 3.0, 1.1 and 0.65 Gc/s. The dependence of resonance fields corresponding to frequencies 3 and 0.65 Gc/s on temperature is measured at temperatures between 4.52 and 4.2° K. The resonance field corresponding to the frequency 0.65 Gc/s and the larger of the resonance fields corresponding to the frequency 3 Gc/s within the experimental errors vary with temperature just as the overturning field of the sublattical magnetic moments does. The magnetic moment homogeneous oscillation frequencies in an antiferromagnet separated into domains are calculated. A phase equilibrium diagram is proposed for CuCl₂·2H₂O in a magnetic field parallel to the «easy» axis. The temperature dependence of the lability fields is calculated in the spin wave theory 18.DI approximation.

REEL/FRAME 19762055

CIA-RDP86-00513R002202520001-7" APPROVED FOR RELEASE: 08/09/2001

Immunology

UDC 615.371.078

VASIL'YEVA, I. G., SEMENOV, V. F., GRACHEV, V. P., and POPOVA, V. D., Central Institute for the Advanced Training of Physicians, Institute of Poliomyelitis and Viral Encephalitides, Academy of Medicine USSR

"Potential Evaluation of Vaccines on the Basis of Autoantibody Formation"

Moscow, Laboratornoye Delo, No 6, 1972, pp 368-369

Abstract: Investigations were conducted with nine commercial vaccines to determine whether autoantibodies are a possible complication in vaccine reactions. Experimentally, smallpox was introduced into scarified skins of rabbits, while 200-300 g guinea pigs received subcutaneously 1 ml of Vi antigen, measles vaccine, live polio virus, typhoid vaccine, NIISI vaccine, Fermi's (rabies) vaccine, monovalent pertussis vaccine, or AKDS vaccine. When tested with autologous erythrocytes, the results showed that the smallpox vaccine caused the appearance of autoantibody in all 15 rabbits immunized. Measles, polio, typhoid, and NIISI elicited the appearance of antierythrocyte antibody in 21%, 33%, 50%, and 58% of the guinea pigs immunized, respectively. Only the Vi antigen vaccine did not induce the formation of autoantibodies. In the case of the polio and measles vaccines autoantibodies appeared in 2-3 weeks and persisted until the 30th postimmunization day. Autoantibodies to erythrocytes disappeared in 1.5 months in animals immunized with Fermi's or small.pox vaccines, 1/2

USSR

VASIL'YEVA, I. G., et al., Laboratornoye Delo, No 6, 1972, pp 368-369

while persisting for over 8 weeks in NIISI immunized animals. In addition, all animals formed antiliver antibodies; furthermore, Fermi's vaccine, monovalent pertussis, and AKDS elicited antibodies against splenic tissue. Autoantibodies against the kidney were induced by Fermi's, NIISI, and AKDS vaccines, antibodies against the heart were formed by animals immunized with Fermi's vaccine and AKDS, antibodies against lung tissue were formed by animals immunized with AKDS and monovalent pertussis vaccine, and antibodies against the brain were formed by guinea pigs immunized with Fermi vaccine. The data indicate that the formation of autoantibodies following vaccination is a real phenonomenon and constitutes an important parameter in the evaluation of vaccine reaction.

2/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

Mechanical Properties

USSR

UDC 669.14.018.21620.17

TIKHOMIROV, V. V., SHAKHNAZAROV, YU. V., PANKOV, A. G., and POPOV, V. D.

"Mechanical Properties and the Breaking Strength of Steel Ni8K9M5T After Different Aging Methods"

Moscow, Metallovedeniye i Termicheskaya Obrabotka Metallov, No 4, 1971, pp 6-8

Abstract: The effect of the temperature and the aging period on mechanical properties of Ni8K9M5T martensitic-aging steel melted down in a 0.5-ton vacuum-induction furnace was investigated. The breaking strength was rated by the specific work of impact bending of specimens with a fatigue crack and the factor K characterizing the intensity of stresses in plane stress condition. It was found that low-temperature aging at 425-450°C ensures high strength properties than high-temperature aging at 480-500°C. The factor K was found to represent a more responsive characteristic in rating the tendency of steel to brittle failure than the energy to fracture determined on an impact specimen with a preliminarily applied fatigue crack. Four illustrations, six biblio, refs.

1/1

UDC 539:3:534.1

USSR

PEREL'MAN, B. S., POPOV, V. F.

"Calculation of Destructive Stresses in the Compression of Thin-Walled Panels"

7 sb. Kratk. tezisy dokl. k Konf. po povrezhdeniyam i ekspluat. nadezhnosti sudovykh konstruktsiy, 1972 (Brier Subjects of Papers at the Conference on Failure and Operational Reliability of Ship Designs, 1972 -- Collection of Works), Vladivostok, 1972, pp 83-87 (from RZh-Mekhanika, No 3, Mar 73, Abstract No 3V315)

Translation: An algorithm is proposed for calculating a reinforced panel for the limiting state for three different forms of stability loss: local (sheathing between the ribs); general (ribs in its plane), and lateral (ribs out of its plane). Numerical results are not given. N. G. Gur'yanov.

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

USSR

UDC 669.15'24'295----194:620.183

SAVITSKIY, Ye. M., POPOV, V. F., SHMATKO, M. N., and SAPEL'NIKOV, P. P., Moscow, Chelyabinsk

"The Effect of Cerium and Niobium on the Structure of Kh25T Steel"

Moscow, Izvestiya Akademii Nauk SSSR, No 5, 1973, pp 145-149

Abstract: The optical metallography of specimens of Kh26T steel from experimental and industrial melts makes possible the uncovering of the difference in the development of excess phases on vering of the difference in the development of excess phases on grain boundaries of the cast metal. Microadditions of ferrocerium and ferroniobium favor a coagulation of separations. Semitium and ferroniobium favor a coagulation of separations. Semitransparent film separations of chromium carbides (Cr23C6) in common cast steel are arranged on grain boundaries in the form of continuous separations, they occupy a 5-10 times greater surface than in the experimental steel. Their quantity in the metal with ferrocerium and ferroniobium is much lower, and they are sepa-

1/2

- 40 -

साराज्यप्रसारमञ्जाहमञ्जाहमान्त्राम् । साराज्यस्य साराज्यस्य । साराज्यस्य । साराज्यस्य । साराज्यस्य । साराज्यस् साराज्यप्रसारमञ्जाहमान्त्राम् । साराज्यस्य । साराज्यस्य । साराज्यस्य । साराज्यस्य । साराज्यस्य । साराज्यस्य ।

USSR

SAVITSKIY, YE. M., et al., Izvestiya Akademii Nauk SSSR, No 5, 1973, pp 145-

rated and distributed more uniformly in the matrix. Microalloying with ferrocerium and ferroniobium favored a higher coagulation of chromous carbides, if compared with ferrocerium. A substantial difference in the distribution of chromium carbides in fractures of the metal of pipes before and after thermal treatment was uncovered. Microalloying of steel with ferrocerium changes completely the structure of the investigated steel after forging: the grains were highly elongated and showed a fine-fragmented the grains were highly elongated and showed a fine-fragmented structure. The relation was established between the change of the structure and the increase of plastic characteristics of high-alloy steel of ferrite type. Three figures, one table, ten bibliographic references.

2/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

UDC 616.915-036.2(47)

ussr

POPOV, V. F., and RYEKINA, N. M., Ministry of Health USSR

"Patterns of Measles Epidemiology in the USSR"

Moscow, Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii, Vol 47, No 6, Jun 70, pp 68-73

Abstract: To improve mass measles vaccinations, the incidence of the disease in Russia was analyzed. The first case was reported in 1842. The incidence increased thereafter, as is shown by data for the period from 1890 to 1968. From 1924 on, thereafter, as is shown by data for the period from 1890 to 1968. From 1924 on, the number of cases rose sharply. Fluctuations are observed from year to year, but the total number of cases increased. Practically the entire population, at least the total number of cases must be equal to the number of births each year. For the last 17 ber of cases must be equal to the number of births each year. For the last 17 years, more cases were reported in urban areas than in rural areas. Most cases years, more cases were reported in urban areas than in rural areas. Most cases were reported during the winter and spring months. The lowest incidence is reported were reported during the winter and spring months. The lowest incidence is reported in August/September, the maximum rate in February, regardless of the total number of cases involved. Morbidity among the urban population was higher than for the residents of rural areas. Children brought up in institutions show a greater residence of measles than children brought up in their own home. It is proposed incidence of measles than children brought up in their own home. It is proposed that the detailed data on measles incidence in the USSR be considered for use in mass vaccination in the USSR.

USSR

UDC 621.365.032.14

POPCY. V.F.:

"Investigation Cf The Properties Of Nonsputtered Getters"

Elektron. tekhnike. Nauchno-tekhn. sb. Elektron. SVCh (Electronic Technology.
Scientific-technical Collection. Microwave Electronics), 1970, No 7, pp 150-157
(from RZh-Elektronike i yeye primsensiye, No 11, November 1970, Abstract No 11A102)

Translation: The sorption characteristics of six nonsputtered getters were measured on a unit with non-oily evacuation. Their mechanical stability during vibration and their thermostability were examined. Summary.

uno 621.385.032.14

USSR

POPOV. V.F.

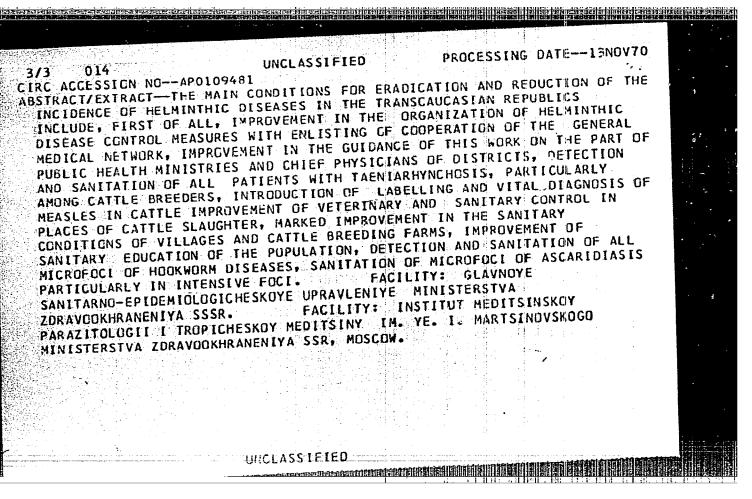
*Investigation Of The Rate Of Sorption Of Gases By Nonpulverized Porous Getters"

Elektron. tekhnika. Nauchno-tekhn. eb. Elektron. SVOh (Electronics Technology. Scientific-Technical Collection. Microwave Electronics), 1970, Issue No 10, pp 118-128 (from RZh-Elektronika i yeye primeneniye, No 2, February 1971, Abstract No 2A105)

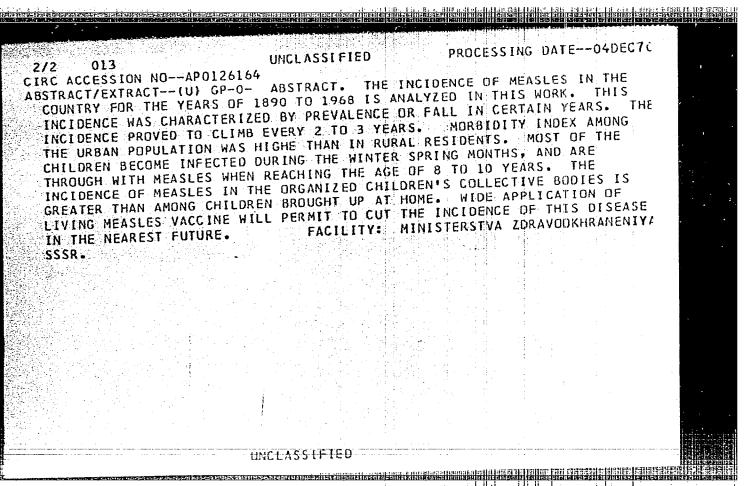
Translation: The paper considers theoretically the sequence of the stages of the mechanism for sorption of gases by a porous getter, with the object of determining tentative semiemperical relations of the time and rate of sorption, and also a comparison of them with experimental date. It is shown that the initial stage --physical adsorption -- in real porous getters continues from several seconds to tens of seconds, and consequently it is difficult experimentally to measure the rate of absorption of gases during adsorption. The transition to the stage of chemisorption is accompanied by a considerable reduction of the rate of sorption; the rate of sorption at this stage is the inversely proportional magnitude (1+ C(t)2, where t is the time and C(is the coefficient of "retention." taneously with the process of chemisorption, the diffusion process is begun, which completely determines the gas absorption rate after the chemisorption rate is reduced to the diffusion rate. The quantity of gases being absorbed in a real getter 1/2

CIA-RDP86-00513R002202520001-7" APPROVED FOR RELEASE: 08/09/2001

POPOV. V.F., Elektron. tekhnika. Nauchno-tekhn. sb. Elektron SVCh., 1970, Issue No. 10, pp 118-128


is determined by the parameters of the diffusion process. The absorption rate of gases at the diffusion stage is proportion to $1/t^{1/2}$. For a practical evaluation of the necessary size of the getter as a function of the conditions of its operation in devices, formulas are presented coupling the geometric size of the getter with the operating time of the device, the temperature, and porosity of the getter with the necessary pressure of the gas on the getter and rate of inleakage of the gas. 2 ill. 5 ref. G.B.

2/2


.. 87 -

			EN PRESIDE EN PERSON	
	CD.	OCESSING DATE-	13'NC V70	
1/3 014 TITLE-SITUATION WITH TAENIARH IN TRANSCAUCASIAN REPUBLICS AUTHOR-(05)-POPOV, V.F., SHULM	YNCHOSIS, HOOKWORM DIS	EASES AND ASUAR	ON AND	.
FORNKHINA: N.O.				
CCUNTRY OF INFOUSSR SOURCE-MEDITSINSKAYA PARAZITO 39. NR 2. PP 180-188 DATE PUBLISHED	DLOGIYA I PARAZITANI			
SUBJECT AREAS—BIOLOGICAL AND	MEDICAL SCIENCES			
	PARASITE			
CONTROL MARKINGNO RESTRICTI			**************************************	
DOGUMENT CLASSUNCLASSIFIED PROXY REEL/FRAME1990/1419	STEP NOUR/0358/	70/039/002/018	0/0188	
GIRC ACCESSION NU-APO109481	LASSIFIED			

PROCESSING DATE--13NOV70 UNCLASSIFIED 2/3 CIRC ACCESSION NO--APOLO9481 ABSTRACT. THE DECREEE OF THE USSR MINISTRY ABSTRACT/EXTRACT--(U) GP-0-OF PUBLIC HEALTH NO. 230 OF MARCH 20, 1967 PROVIDES FOR A NUMBER OF MEASURES FOR INCREASING THE PACE OF ERADICATION AND REDUCTION OF INCIDENCE OF A NUMBER OF INFECTIOUS AND PARASITIC DISEASES IN THE SOVIET UNION. FROM YEAR TO YEAR THE RANGE OF EXAMINATIONS OF THE POPULATION FOR DETECTION OF HELMINTHIC DISEASES INCREASES IN THIS COUNTRY. THE AMOUNT OF WORK DONE FOR CONTROL OF HELMINTHIC DISEASES HAS INCREASED SIGNIFICANTLY IN REPUBLICS OF THE TRANSCAUCASUS WHICH, ALONGSIDE WITH INCREASING OF MATERIAL WELFARE OF THE PEOPLE, IMPROVEMENT OF THEIR SANITARY CULTURE, CONTINUOUSLY IMPROVING SANITARY CONDITIONS OF INHABITED AREAS RESULTED IN 1967 IN 2.1 FOLD REDUCTION IN THE INCIDENCE OF HELMINTHIC DISEASES IN THE POPULATION OF THE AZERBAIJAN AND THE ARMENIAN SSR. AND 2.8 FOLD REDUCTION IN THE GEORGIAN SSR AS COMPARED WITH THE LEVEL OF INCIDENCE IN 1950. EVEN THOUGH AS A RESULT OF MUCH WORK DONE IN SANITATION OF THE POPULATION FROM TAENIARHYNCHOSIS AND ASCARDIASIS THE INCIDENCE OF THESE HELMINTHIC DISEASES HAS BEEN REDUCED SEVERAL TIMES, IT IS STILL MUCH HIGHER THAN THE AVERAGE INDEX FOR THE SOVIET UNION. THE INCIDENCE OF HOOKWORM DISEASES IN THE POPULATION OF THE AZERBAIJAN SSR AND PARTICULARLY OF THE GEORGIAN SSR IN 1967 ALSO REDUCED SEVERAL TIMES AS COMPARED WITH THAT IN 1959, BUT ERADICATION OF THIS HELMINTHIC DISEASE REQUIRES STILL HUCH WORK TO BE DONE. · Mer KeeffETED

PROCESSING DATE--04DEC70 UNCLASSIFIED TITLE--EPIDEMIOLOGICAL REGULARITIES OF MEASUES IN THE USSR -U-AUTHOR-(02)-POPOV. V.F., RYBKINA, N.M. COUNTRY OF INFO--USSR SOURCE-ZHURNAL MIKROBIOLOGII, EPIDEMIOLOGII I IMMUNOBIOLOGII, 1970, NR 6, PP 68-73 DATE PUBLISHED-----70 SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES TOPIC TAGS--MEASLES, EPIDEMIOLOGY, MORBIDITY, GEOGRAPHIC LOCATION CONTROL MARKING-NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0016/70/000/006/0068/0073 PROXY REEL/FRAME--3001/0411 CIRC ACCESSION NO--APO126164 UNCLASSIFIED

USSR

UDC 632.954

GRUZDEV, G. S., and POPOV, V. G., Agricultural Academy imeni K. A. Timiryazev

"Combination of Chemical and Agrotechnical Methods in the Control of Acroption Repens D.C."

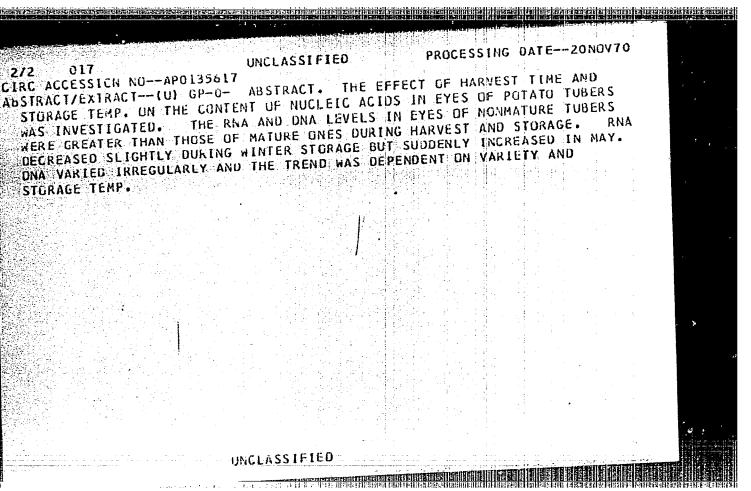
Moscow, Khimiya v Sel'skom Khozyaystve, Vol 10, No 12, 1972, pp 37-42

Abstract: Banvel-D/active ingredient dimethylamine salt of 2-methoxy-3,6-dichlorobenzoic acid/and tordon-22k (a derivative of 4-amino-3,5,6-trichloropicolinic acid) are effective herbicides in the control of persistent perennial weeds such as gorchak polzuchiy (Acroption repens D. C.). However, their application in optimum doses for a herbicidal effect damages crops. It was established in experiments on waste land overgrown with A. repens that spraying with tordon-22k (1.0-3.0 kg/ha), banvel-D (5.0-10.0 kg/ha), or a mixture of tordon-22k +banvel-D (0.5 + 10.0 kg/ha; 1.0 + 5.0 kg/ha), when followed by plowing to a depth of 30 cm, suppressed the growth of A. repens for 9-11 mos and 24 mos on planting of corn and winter wheat, respectively. The root system of the weed perished entirely on application of the mixtures of the two herbicides. Banvel-D (5.0-10.0 kg/ha), tordon-22k (0.5-1.0 kg/ha), or a mixture of tordon-22k (0.5 kg/ha) and banvel-D (10.0 kg/ha) did not lower the yield of the green mass of corn planted 8 mos after application of the herbicides. Tordon-22k 1/2

Ζ'n

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

USSR


GRUZDEV, G. S. and POPOV, V. G., Khimiya v Sel'skom Khozyaystve, Vol 10, No 12, 1972, pp 37-42

(2.0-3.0 kg/ha) lowered the yields of the green mass of corn and of the grains of winter wheat. Tordon-22k (0.5 kg/ha) or banvel-D (5.0 - 10.0 kg/ha) did not reduce the yield of winter wheat planted 1 yr after their application. The crops of corn and wheat planted 8 and 12 mos, respectively, after application of tordon-22k (0.5 kg/ha) or banvel-D (5.0-10.0 kg/ha) did not contain residues of the herbicides. On spraying of tordon-22k in amounts $\gg 0.5$ kg/ha, its residual content in the crops was considerable.

2/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

UNCLAS L/Z 017 OF HARVEST TIME AND S	PROCESSING DATE20NOV70 SIFIED PROCESSING DATE20NOV70 TORAGE TEMPERATURE ON THE NUCLEIC AC10	
LEVEL IN TISSUES OF POTATO TUBERS LEVEL IN TISSUES OF POTATO TUBERS LUTHOR-(021-GUSEV. S.A., POPOV. V.G		
CUNTRY OF INFOUSSR SCURCEPRIKL. BIOKHIM. MIKROBIOL.	1970, 6(2), 138-41	
DATE FUELISHED70		
SUBJECT AREAS-BIOLOGICAL AND MEDI	CAL SCIENCES	
SUBJECT AREAS—BIOLOGICAL TEMPERAT	URE: AUCLE 10	
CONTROL MARKING-NO RESTRICTIONS		. 9
DECUMENT CLASS—UNCLASSIFIED PROXY REEL/FRAME—3007/0120	STEP NOUR/0411/70/006/002/0138/0141	1
CIRC ACCESSIEN NOAPO135617 UNGLASS		

AP0044595 Acc. Nr:

Ref. Code: UK 0497

PRIMARY SOURCE: Klinicheskaya Meditsina, 1970, Vol 48,

1 , PP 32-37

THE CLINICO-ELECTROCARDIOGRAPHIC PICTURE OF INTERMEDIATE FORMS OF CORONARY (ISCHEMIC) DISEASE

V. G. Popos, T. I. Belyakova

Summary

The paper presents the differential diagnosis signs of intermediate forms of coronary (ischemic) disease (primary and repeated microfocal myocardial infarction, focal dystrophy of the myocardium). The authors emphasize the diagnostic importance of these forms, along with the clinico-electrocardiographic picture, data of laboratory investigations. The recognition of intermediate forms of coronary disease is of essential significance both for the prognosis and for the proper institution of therapeutic and prophylactic measures.

UDC: 629.78.062.2

POPOV. V. I., RUTKOVSKIY, V. Yu.

"Investigation of the Dynamics of a System for Predamping a Gravitationally Stable Satellite With Regard to Limitations of Pickups and Flexural Oscillations of the Stabilizer"

Moscow, Upr. dvizhushchimisya ob"yektami. Tr. IV Vses. soveshch. po avtomat. upr. Tbilisi, 1968--sbornik (Control of Moving Objects. Works of the Fourth All-Union Conference on Automatic Control. Tbilisi, 1968--collection of papers), 1972, pp 72-87 (from RZh-Raketostroyeniye, No 10, Oct 72, abstract No 10.41.73)

Translation: The authors study the dynamics of a gas-reactive predamping system on the phase plane with regard to limitations of pickups. The problem of utilizing limitations of pickups in forming nonlinear control laws is considered. It is shown that a considerable savings of reaction mass may be effected by proper selection of the coefficients in the law of regulation and the delay time in the system. Self-oscillating modes in the predamping system are studied. A stabilizer is added to the satellite to make it gravitationally stable. The stabilizer must be uncovered after separation of the

1/2

USSR

POPOV, V. I., RUTKOVSKIY, V. Yu., Upr. dvizhushchimisya ob"yektami. Tr. IV Vses. soveshch. po avtomat. upr. Tbilisi, 1968—sbornik, 1972, pp 72-87

satellite from the main lifting stage. Equations are derived for plane flexural oscillations of the satellite-stabilizer, and the resultant expressions are studied. Flexural oscillations of a satellite-stabilizer system with regard to the predamping system are investigated on a digital computer. It is shown that if the predamping system has a relay characteristic with a zone of insensitivity, flexural oscillations of the satellite-stabilizer system may be damped within an acceptable time interval. Four illustrations, bibliography of ten titles. Résumé.

2/2

- 37 --

2

USSR

UDC 621.396.6-181.5

BELOUS, M. V., KOSENKOV, A. S., PAYLENKO, G. I., POPOV, V. I., CHUGAYEV, V. N., SHCHERBIK, V. K.

"On the Properties of Conductive Elements of Thin-Film Microcircuits Made by Vaporization of Aluminum, Nickel, Copper and Copper-Based Alloy"

Elektron. tekhnika. Nauch.-tekhn. sb. Mikroelektronika (Electronic Technology. Scientific and Technical Collection. Microelectronics), 1971, vyp. 1(27), pp 101-109 (from RZh-Radiotekhnika, No 8, Aug 71, Abstract No 8V277)

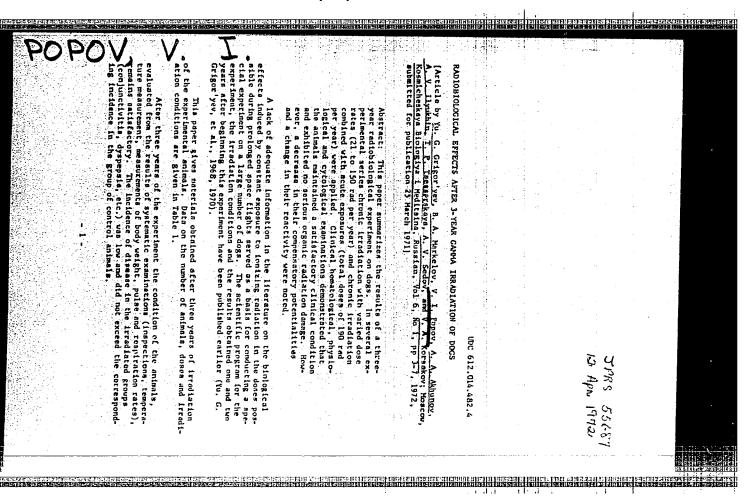
Translation: The authors studied the electrical, structural, adhesion and other properties of films made by vacuum deposition of aluminum, nickel, copper and an alloy of 94.5% Cu, 5% Ni and 0.5% Mn. It is shown that alloying copper with elements having a vapor pressure which differs markedly from that of the base of the alloy enables an appreciable improvement of the required properties of the films without any pronounced adverse effect on their conductivity. Resums.

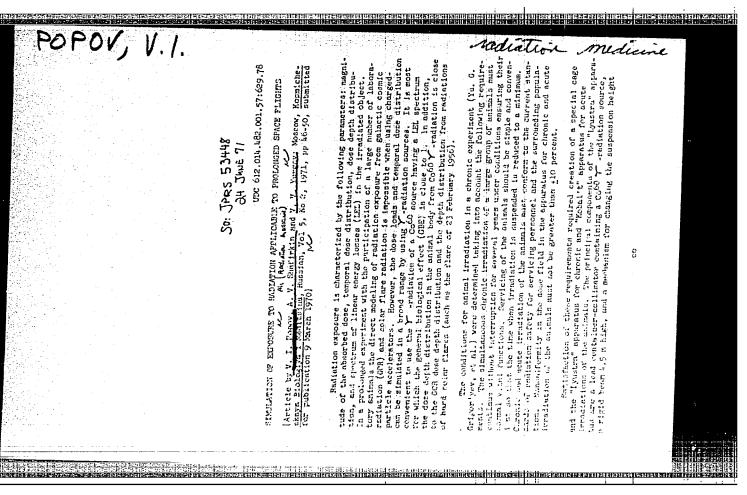
1/1

TO THE COLUMN TO THE PROPERTY OF THE PROPERTY

USSR UDC 632.93+631.531

POLYAKOV, I. H., POPOV. V. I., KUHACHEVA, YE. M.


"Effectiveness of Vitavax Against Loose Wheat Smut"


Moscow, Khimiya v Sel'skom Khozyaystve, No 1, 1972, pp 20-22

Abstract: A study was made of vitavax (2,3-dihydro-5-carboxyanilid-6-methyl-1, 4-oxathine) prepared in various forms as a fungicide in the control of loose wheat smut. Test results are presented for the Krasnodar Kray, Leningrad, Irkutsk, Novosibirsk and Moscow Oblasts for a 75% wetting powder produced by the Uniroyal Company of the USA and a mixture of the MTs-25-vitavax made by the Murphy Company of England containing 50% vitavax and 30% bis-(8-quanidino-octyl)ammonium sulfate.

The 75% vetting power was effective in the control of loose wheat smut in all the tent weas. On always disinfection of the seed with viterax in doses of 4-8 grams/kg (without drying), dayage to the wheat from this disease was completely prevented in autoral and artificial tests of seed infected with smut. The compound aid not lower the germination of the thickness of the stand, and on the whole it had a positive effect on the harvest. An insignificant reduction in yield was observed only in one case. The effectiveness of the combination MTs-25-vitavax compound against shut was somewhat lower. Vitavax has been recommended for broad production testing under various climatic conditions.

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

USSR

UDC 531.1

POPOV, V. I.

"The Stability of the Stationary Motions of a 4-Gyroscope Vertical Installed on a Satellite in a Newtonian Central Force Field"

Mekhanika Tverdogo Tela, No 6, 1971, pp 25-28.

ABSTRACT: The stability of a single-rotor gyroscope installed on a satellite has been studied in earlier articles. In this work, the method of measurement of potential energy is used to study the stability of stationary motions of a 4-rotor gyrosystem, installed on a satellite in a newtonian central force field. The problem is solved in a limited statement. The point of suspension of the gyrosystem does not correspond to the center of mass of the satellite. The corresponding angular velocities of the rotors are considered constant, as in the earlier works.

1/1

- 142 m

UDC 539.67

ZUHEKHIN, V. P., NOVOKRESHCHENOV, P. D., POPOV, V. I., and MAKSIMOV, V. P.

"On the Problem of Metal Internal Friction Mechanism in the Process of Plastic Deformation"

Sb. "Vnutrenneye treniye v metallicheskikh materialakh" (Internal Friction in Metallic Materials), Moscow, Izd-vo "Nauka," 1970, pp 73-76

Abstract: Results are presented of a study of the nature of internal friction in nickel and NTsm-2.5 alloy, measured in the process of their plastic deformation at various temperatures.

It is shown that a certain relationship is observed between changes in Q-1 and creeping stages.

Problems related to the onset and propagation of cracks are discussed on the basis of general dislocations. 3 figures, 8 references.

1/1

. 74 -

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

ilitiko. Piringunia pula hitara muanda para muanda para muanda muanda muanda muanda muanda muanda muanda muanda muanda m

USSR UDC: 621.3.049.75

KOSENKOV, A. S., PAVLENKO, G. I., POPOV, V. I.

"A Method of Protecting the Film Elements of Microcircuits"

Moscow, Otkrytiya, izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, No 10, Apr 71, Author's Certificate No 298087, Division H, filed 28 Mar 69, published 11 Mar 71, p 197

Translation: This Author's Certificate introduces a method of protecting the film elements of microcircuits such as contact areas and lines which also contain resistive elements based on pure metals and alloys. The method of protection is based on use of a material with high vapor tension such as cadmium or zinc by sublimation in vacuum with complete reflection of the material from the dielectric material of the substrate. As a distinguishing feature of the patent, the method is designed to ensure that there will be no changes in the parameters of film resistors, while the technological cycle is simplified and the cost of the finished product is reduced. Before coating with the protective material, the substrate with vapor-deposited film elements is heated in a vacuum to 393-453°K, and then the protective material is condensed on the elements to be protected while the rate of sublimation is regulated by controlling the temperature of the vaporizer while it is simultaneously completely reflected from the resistive film elements of the microcircuits.

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

Steels

USSR

UDC 669.15.018.44:620.186

TEN TIL GIB CARESTE DESIRE DESIRE DESIRE DE LE CONTROL DE

SPASSKIY, V. V., POPOV, V. I., GLINKIN, A. S., KRAVTSOVA, T. K., BOBYLEV, F. K., MESHCHERYAKOV, A. S., TROSHKIN, G. N.

"Effect of Phase Composition on the Properties of Austenitic Chromium-Nickel Steels in Castings and Welded Parts"

Liteyn. proiz-vo (Casting Production), 1970, No 11, pp 29-30 (from RZh-Metallurgiya, No 4, Apr 71, Abstract No 41649)

Translation: A study is made of EI572 heat-resistant steel containing (in %) C 0.28-0.33, Mn 1.08-1.27, Si 0.60-0.80, Cr 18.20-20, Ni 8.1-9.7, W 1.48-1.50, Mo 1.20-1.35, Ti 0.22-0.78, Nb 0.26-0.50. The castings were austenitized at 1,160°, and they were cooled in water before aging at 650-820° for 15 hours. The δ -ferrite content in the samples was determined after austenitization and aging. Increasing the Cr, Ni, and Ti content increases the δ -ferrite content. With an increase in the content of C > 0.30%, the amount of $\frac{M}{23}$ Carbides

increased along the grain boundaries. The cooling rate of the casting has a noticeable effect on the amount of δ -ferrite in the steel: in the case of accelerated cooling of the casting in water (4°/second) the amount of δ -ferrite was about twice that obtained with ordinary cooling in the air 0.15°/second). Castings made of EI572 steel for welding must contain 3-5% 1/2

	till state og det en er e En en en er en)					
U	SSR										
S	PASSKIY, V.	V. et	al. Lit	evn nr	01 2-V	1070	No. 11	20.00			
0· m	-ferrite. he required	This is	somewhat	higher	than	for the	same st	eel duri	ng hot wo	rking.	
	he required teel.	amount	or o-ter	rite is	insur	ed by a	0.3-0.4	5% Ti co	ntent in	0	
			· · · · ·								
								\$ 100 miles			
					I						
							1	* *			
							in the E				
2/	2		1000								

USSR

UDC 619:578.085.23-576.858.27

RUDOBEL'SKIY, E. V., SERGEYEV, V. A., and POPOV. V. I., All-Union Scientific Research Institute of Veterinary Virology and Microbiology

"Accumulation of Hog Cholera Virus in Cell Cultures"

Moscow, Veterinariya, No 6, Jun 71, pp 38-40

Abstract: The production of large amounts of cell cultures and subcultures of testicular tissue from lambs and the accumulation of attenuated hog cholera virus strains in these cultures is described. Tissue from the testicles of 1-3 month old lambs was taken, ground and treated with trypsin. The cell suspensions obtained were decanted into a vessel containing calf serum and kept pensions obtained were decanted into a vessel containing calf serum and kept there at a temperature of 4°C for trypsin treatment. The cell suspensions there at a temperature of the contribution. The LK (lapinized strain K) and AK (atwere precipitated by centrifugation. The LK (lapinized strain K) and AK (attenuated strain K) of hog cholera virus were used, as well as forms adapted to cell culture (in 26 and 47 passages, respectively). Some 10 ml of the virus medium was introduced into the cell culture, the mixture was kept for 2 hours at 37°C, then treated with 190 ml of 0.5½ hydrolyzate of lactalbumin in Hanks salt solution, with 4½ lamb serum (pH 7.6). Virus accumulations were determined after 3, 7, 9, and 11 days on piglets which had not been immunized

1/2

USSR

RUDOBEL'SKIY, E. V., et al, Veterinariya, No 6, Jun 71, pp 38-40

against hog cholera. It was found that optimum conditions for cultivation were division by a factor of 8-12 of cells from testicular lamb tissues. Such were division by a factor of 8-12 of cells from testicular lamb tissues. Such were division by a factor of 8-12 of cells from testicular lamb tissues. Such were division by a factor of attenuated variants of hog cholera virus. The vaccination variant LK and the attenuated variant AK accumulated in a titer of 10-5 per ml of medium after 3 days of culture. Further reproduction of the virus is limited by the accumulation of interfering substances in the culture.

2/2

- 91 -

CIA-RDP86-00513R002202520001-7 "APPROVED FOR RELEASE: 08/09/2001

UDC 547.539.131

USSR

KONDRATENKO, N. V., SYROVA, G. P., POPOV. V. I., SHEYNKER, Yu. N., and YAGUPOL'SKIY, L. M., Institute of Organic Chemistry, Academy of Sciences, Ukrainian SSR

"Aryltrihalosilanes and Germanes. o Constants of Trihalosily1 and -Germy1 Groups

Leningrad, Zhurnal Obshchey Khimii, Sep 71, Vol 41, No 9, pp 2056-2060

Abstract: The synthesis of fluorobenzene derivatives with SiHlg3 and GeHlg3 substituents where Hlg=F, Cl and Br is described and the o constants of these groups determined. It was found that the induction effect increases in the series of substituents CHlg3<SiHlg3<GeHlg3 with an increase in the electron donor capacity of the central atom to the halide atoms. The SiHlg3 and GeHlg3 hardly differ with respect to the conjugation effect, but they both excel the acceptor effect of the corresponding CHlg3 groups. The regularities in changes in the σ_{C} constant value are attributed to the participation of silicon and germanium atoms in $d_\pi - P_\pi$ conjugation. The yields, physical constants and analytical results of the obtained compounds are presented in a table.

CIA-RDP86-00513R002202520001-7" APPROVED FOR RELEASE: 08/09/2001

USSR

POPOV, V. I.

"Stability of a Bigyroscopic Frame Installed on a Satellite in the Field of Gravity of Two Stationary Centers"

Tr. Tambovsk. in-ta khim. mashinostr. (Works of Tambov Institute of Chemical Machine-Building), 1970, vyp. 4, pp 224-229 (from RZh-Mekhanika, No 11, Nov 70, Abstract No 11A120)

Translation: In this article the Routh theorem is used to study the stability of stationary movements of a bigyroscopic frame installed on an Earth satellite the center of mass of which moves in a circular orbit in the plane of the Earth's equator. The Earth's potential is approximated by the potential of two stationary centers.

1/1

USSR

FOPOV, V. I., Moscow

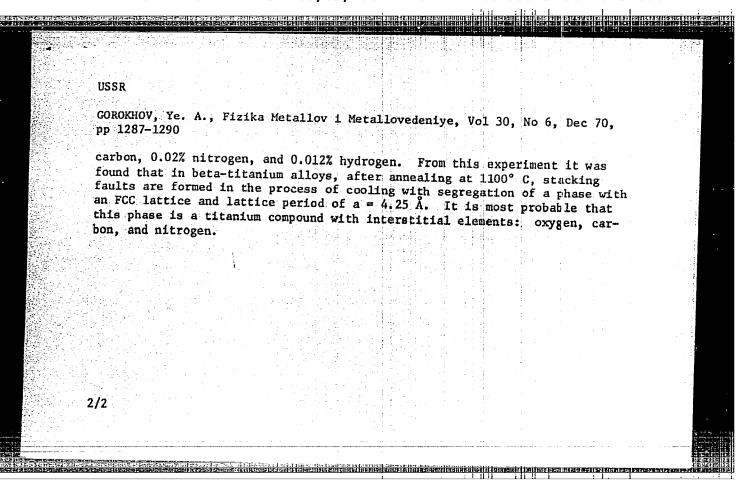
"On the Stability of Steady-State Motions of a Gyroscope Installed on a Satellite, With Regard to the Elasticity of the Rotor Bearings"

Moscow, Mekhanika Tverdogo Tela, No 6, Nov/Dec 70, pp 30-36

Abstract: An extremum theorem is proved for a holonomic mechanical system with n degrees of freedom, with n-k cyclic coordinates. The Routh method is used to derive sufficient conditions for the stability of steady-state motions of a gyroscope installed on a satellite in a Newtonian central force field with regard to the elasticity of the rotor bearings. It is assumed that the point of suspension of the gyroscope coincides with the center of mass of the satellite, which moves in a circular orbit in the same plane as the attracting center. The satellite is in equilibrium with respect to the orbital coordinate system, and the effect of the gyroscope on the satellite is disregarded. Special cases of the resultant conditions of stability are considered for absolutely rigid rotor bearings, and compared with the corresponding data in the literature. The author thanks V. V. Rumyantsev for formulating the problem and for constructive criticism, and A. I. Gurin for discussing the work.

USSR

UDC 539.216.2:538.116


GOROKHOV, Ye. A., KARABANOVA, V. P., and POPOV, V. I., Irkutsk Pedagogical Security of the State of the State of S

"Effect of Perpendicular Anisotropy on the Structure of Domain Boundaries

Sverdlovsk, Fizika Metallov i Metallovedeniye, Vol 30, No 6, Dec 70, pp 1287-

Abstract: Titanium alloys (Ti-3A1-7Mo-11Cr and Ti-3A1-13V-11Cr) were investigated by electron microscopy after being heated to 1100° C and cooled in water or air. Chemical composition of the two alloys was, respectively (in %): 3.23 Al, 10.4 Cr, 7.2 Mo, 0.16 Fe, 0.13 Sr, 0.08 02, 0.008 H2, 0.04 N₂ and 0.040 C; 2.85 A1, 10.64 Cr, 13.15 V, 0.34Fe, 0.10 Si, 0.09 0₂, 0.003 H_2 , 0.01 N_2 , and 0.021 C. The samples were annealed in the form of bars with a cross section of 15 x 15 mm and foil with a thickness of 0.25 mm. After soaking at 1100° C for 1 hour the samples were air cooled and the gas-saturated surface layer removed. The removed foil was annealed in quartz ampules (10-3 mm Hg) containing titanium chips. Gas analysis of the foils after heat treating showed (on the average) 0.12% oxygen, 0.04%

- 72 -

USSR

UDC 541.6:536.485

POPOV V. I., and VOSKRESENSKIY, V. A., Chair of Plastics, Kazan' Construction Engineering Institute

"The Frost Resistance of Polymers"

Moscow, Uspekhi Khimii, Vol 39, No 9, Sep 70, pp 1,707-1,718

Abstract: The article is a survey of the work of Soviet and foreign authors on the frost resistance of polymers. Technical frost resistance is defined as "the ability of polymeric materials to retain operating properties at low temperatures for a certain time interval," theoretical frost resistance as "the lower temperature limit for the start of segmental mobility of macromolecular chains." There is a discussion of existing qualitative methods for determining the frost resistance of various types of polymeric materials, as well as quantitative methods suggested by Soviet authors. Special attention is given to the method suggested by M. N. SHTEDING and V. A. KARGIN, which uses thermomechanical characteristics of the temperature dependence of deformation, obtained under axial tension on a deformometer. The authors consider this method "a significant step forward in frost resistance determination, but one requiring the making of a special and rather complex instrument — the deformometer." The authors have used the KARGIN-SHTEDING principle to determine 1/2

ingonaria e el quescolo la ler ten recessor el desarro en escribiros escribiros. Indonesias en escribiros en el escribiros

USSR

POPOV V. I., and VOSKRESENSKIY, V. A., Uspekhi Khimii, Vol 39, No 9, Sep 70, pp 1,707-1,718

D. 450 II. J. H. H. J. H

the frost resistance of polymeric films, but instead of the deformometer they used an instrument specially adapted for these purposes which is ordinarily employed in technology for determining the frost resistance of rubbers. The authors assert, "The use of the KARGIN-SHTEDING method with allowance for the procedural and equipment modifications suggested by us permits not only a more precise determination of the absolute frost-resistance values for polymeric films, but also the quantitative tracing of the effect of various external factors (quantity and type of plasticizers, processing conditions, aging processes etc.) on polymers."

The article concludes with data on research into the relationship between frost resistance and the previous history of polymer production and processing, the character and duration of aging, the action of plasticizers, fillers etc.

2/2

77.

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"

UDC 621.314.58 (088.8)

ZINOV'YEV, G.S., FOPOV, V.I. [Novosib. elektrotekhn. in-t -- Novosibirsk Electrical Engineering Institute]

"Method Of Frequency Conversion"

USSR Author's Certificate No 250283, filed 15 June 68, published 23 Jan 70 (from RZh-Elektronika i yeye primeneniye, No 11, November 1970, Abstract No 11846OP)

Translation: The invention pertains to a frequency converter in which from 3-phase voltage an intermediate single-phase high-frequency voltage is formed, which is aubsequently converted with the mid of a phase splitter into 3-phase voltage of controlled frequency. With the object of eliminating equalizing currents, which increases the efficiency and the power factor of the converter, and also for simplification of the control system (because of replacing 6 thyristors by semiconductor diodes), it is proposed to form single-phase high-frequency voltage of a square form with a nonsymmetrical duration of the half periods. 2 ill. I.R.

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520001-7"